How ‘arm-twisting’ by the inducer triggers activation of the MalT transcription factor, a typical signal transduction ATPase with numerous domains (STAND)
نویسنده
چکیده
Signal transduction ATPases with numerous domains (STAND) get activated through inducer-dependent assembly into multimeric platforms. This switch relies on the conversion of their nucleotide-binding oligomerization domain (NOD) from a closed, ADP-bound form to an open, ATP-bound form. The NOD closed form is stabilized by contacts with the arm, a domain that connects the NOD to the inducer-binding domain called the sensor. How the inducer triggers NOD opening remains unclear. Here, I pinpointed the NOD-arm interface of the MalT STAND transcription factor, and I generated a MalT variant in which this interface can be covalently locked on demand, thereby trapping the NOD in the closed state. By characterizing this locked variant, I found that the inducer is recognized in two steps: it first binds to the sole sensor with low affinity, which then triggers the recruitment of the arm to form a high-affinity arm-sensor inducer-binding site. Strikingly, this high-affinity binding step was incompatible with arm-NOD contacts maintaining the NOD closed. Through this toggling between two mutually exclusive states reminiscent of a single-pole double-throw switch, the arm couples inducer binding to NOD opening, shown here to precede nucleotide exchange. This scenario likely holds for other STANDs like mammalian NLR innate immunity receptors.
منابع مشابه
Conserved motifs involved in ATP hydrolysis by MalT, a signal transduction ATPase with numerous domains from Escherichia coli.
The signal transduction ATPases with numerous domains (STAND) are sophisticated signaling proteins that are related to AAA+ proteins and control various biological processes, including apoptosis, gene expression, and innate immunity. They function as tightly regulated switches, with the off and on positions corresponding to an ADP-bound, monomeric form and an ATP-bound, multimeric form, respect...
متن کاملStructural model of MalK, the ABC subunit of the maltose transporter of Escherichia coli: implications for mal gene regulation, inducer exclusion, and subunit assembly.
We are presenting a three-dimensional model of MalK, the ABC subunit of the maltose transporter from Escherichia coli and Salmonella typhimurium. It is based on the recently published crystal structure of the closely related Thermococcus litoralis MalK. The model was used to identify the position of mutations affecting the different functions of the ABC subunit. Six malK point mutations were is...
متن کاملA complex signaling module governs the activity of MalT, the prototype of an emerging transactivator family.
MalT, the specific activator of the maltose regulon, is the prototype of a family of high-molecular-mass ATP-binding bacterial transcription activators. On binding of its two positive effectors, the inducer maltotriose and ATP, MalT oligomerizes to an active state competent for promoter binding and transcription activation. In addition to its previously known DNA-binding domain, limited proteol...
متن کاملRecent Advances in T Cell Signaling in Aging
The immune system of mammalian organisms undergoes alterations that may account for an increased susceptibility to certain infections, autoimmune diseases, or malignancies. Well characterized are age related defect in T cell functions and cell mediated immunity. Although it is well established that the functional properties of T cells decrease with age, its biochemical and molecular nature is...
متن کاملImproving Rice (Oryza sativa L.) Drought Tolerance by Suppressing a NF-YA Transcription Factor
The response to drought stress is a complicated process involving stress sensing, intracellular signaltransduction, and the execution of a cellular response. Transcription factors play important roles in the signaling pathways including abiotic stress. In the present study a rice NF-YA transcription factor gene was partially characterized following dehydration. Disrupting the gene via a T...
متن کامل